We provide artificial intelligence resources who understand “data and the scientific tools of analysis” along with the skills to develop state of the art technological solutions to solve today’s business challenges.


Free Educational Offerings

Online Courses About Artificial Intelligence and Machine Learning

We are developing a full curriculum of online courses covering the essentials of AI and ML. Our initial list consists of free offerings currently made available through some of the market’s top suppliers. As our own curriculum and those of our partnerships develop we will announce additional courses through our newsletter. Please be sure to subscribe so we can keep you up to date. Our aim is to keep you equipped with the best knowledge available . Click on the images to view the course.


Learn With Google AI

The course covers the ground from a basic introduction to machine learning, to getting started with TensorFlow, to designing and training neural nets.

It is designed so that those with no prior knowledge of machine learning can jump in right at the start, those with some experience can pick or choose modules which interest them, while machine learning experts can use it as an introduction to TensorFlow.


Google - Machine Learning

This is a slightly more in-depth course from Google offered through Udacity. As such, it isn’t aimed at complete novices and assumes some previous experience of machine learning, to the point where you are at least familiar with supervised learning methods.

It focuses on deep learning, and the design of self-teaching systems that can learn from large, complex datasets.

The course is aimed at those looking to put machine learning, neural network technology to work as data analysts, data scientists or machine learning engineers as well as enterprising individuals wanting to make use of the plethora of open source libraries and materials available.


Stanford University Machine Learning

This course is offered through Coursera and is taught by Andrew Ng, the founder of Google’s deep learning research unit, Google Brain, and head of AI for Baidu.

The entire course can be studied for free, although there is also the option of paying for certification which could certainly be useful if you plan to use your understanding of AI to increase your career prospects.

The course covers the spectrum of real-world machine learning implementations from speech recognition and enhancing web search, while going into technical depth with statistics topics such as linear regression, the backpropagation methods through which neural networks “learn”, and a Matlab tutorial – one of the most widely used programming languages for probability-based AI tools.


Machine Learning - Columbia University

Machine Learning is the basis for the most exciting careers in data analysis today. You’ll learn the models and methods and apply them to real world situations ranging from identifying trending news topics, to building recommendation engines, ranking sports teams and plotting the path of movie zombies.

Major perspectives covered include:

  • probabilistic versus non-probabilistic modeling
  • supervised versus unsupervised learning

In the first half of the course we will cover supervised learning techniques for regression and classification. In this framework, we possess an output or response that we wish to predict based on a set of inputs. We will discuss several fundamental methods for performing this task and algorithms for their optimization.

In the second half of the course we shift to unsupervised learning techniques. In these problems the end goal less clear-cut than predicting an output based on a corresponding input. We will cover three fundamental problems of unsupervised learning: data clustering, matrix factorization, and sequential models for order-dependent data. Some applications of these models include object recommendation and topic modeling.


Nvidia - Fundamentals of Deep Learning for Computer Vision

Computer vision is the AI sub-discipline of building computers which can “see” by processing visual information in the same way our brains do.

As well as the technical fundamentals, it covers how to identify situations or problems which can benefit from the application of machines capable of object recognition and image classification.

As a manufacturer of graphics processing units (GPUs), Nvidia unsurprisingly covers the crucial part these high-powered graphical engines, previously primarily aimed at displaying leading-edge images, has played in the widespread emergence of computer vision applications.

The final assessment covers building and deploying a neural net application, and while the entire course can be studied at your own pace, you should expect to spend around eight hours on the material.

Ready to get started?